CASE STUDY: SUMMARY, OUTCOMES AND NEXT STEPS FOR GREATER SHEPPARTON CITY COUNCIL

Urban Forest Strategy - Case Study overview

- Climate change expected to increase temperatures and heatwave events in our municipality
 - Greater Shepparton MEMPC currently developing Extreme Heatwave complementary plan (Municipal Emergency Management Plan)
 - What can residents do?
 - What can Council do?
 - Impacts of Urban Heat Island (UHI)
- What adaptation options may be available to Council to decrease the Urban Heat Island?
 - Urban Forest Strategy adopted in 2017
 - 40% canopy cover target by 2037; implementation is underway
- What are the health and economic benefits of increasing the urban forest for our residents under projected climate change impacts?

Urban Forest Strategy - Case Study Process

- Case Study analysed data and information from multiple sources, including both GSCC and Marsden Jacobs
 - GIS data tree canopy cover
 - Tree species lists
 - Tree management policy
 - Tree technical manual
 - Budget costs planting and maintenance
 - Extreme heatwave complementary plan
 - Staff expertise (urban forest team)
 - Health and business case cost data *Marsden Jacobs*
- Considered two options compared to Baseline
 - Option 1: current target (40% canopy cover)
 - Option 2: reduced target (30% canopy cover) theoretical only
 - Baseline comparison: current canopy cover ~18%
 - Other options: reflective paving, shade structures, water bodies

Tree Canopy Cover & Thermal Image Assessment

Greater Shepparton City Council

Urban Forest Strategy - Case Study outcomes

- Continued implementation of the UFS will provide substantial net benefits for the community under both Option 1 (40%) & 2 (30%)
 - Avoided premature mortality; increased mental wellbeing; avoided healthcare costs; avoided impacts of air pollution
- Benefit Cost Ratio larger for Option 2 than Option 1
 - Greater benefits and greater costs for Option 1, but additional benefits of increasing canopy from 30-40% proportionally less than additional costs of the increase
- Considerations:
 - Optimising number, mix and location of new tree plantings (e.g. parks vs streets)
 - Hard surfaces vs natural surfaces (e.g. impact on tree health)
 - Public education on urban heat and benefits of increasing canopy cover

Table ES.1. Cost benefit analysis results of increasing tree canopy cover to 40% (Option 1) and 30% (Option 2) under the moderate climate change scenario

Costs and benefits	Option 1	Option 2
	(Increasing tree canopy cover to	(Increasing tree canopy cover
	40%)	to 30%)
Costs		
Capital costs	\$3,639,800	\$1,955,000
Operating costs	\$32,160,900	\$19,251,300
Total Costs (present Value)	\$35,800,700	\$21,206,400
Benefits		
Avoided health impacts of air pollution	\$2,613,200	\$1,407,800
Value of lives saved	\$58,461,300	\$36,043,800
Avoided healthcare costs	\$4,720,500	\$2,776,800
Increased mental wellbeing	\$15,087,200	\$15,087,200
Total Benefits/Avoided Costs (Present Value)	\$80,882,300	\$55,315,700
Net Present Value (NPV)	\$45,081,600	\$34,109,300
Benefit Cost Ratio (BCR)	2.26	2.61

Case study benefits

- Confirmation that continued implementation of the UFS will benefit the health of our community
- Collaboration between different teams
 - Emergency Management, Parks Sport & Recreation, GIS, Sustainability & Environment
 - Climate change presents complex challenges, which will require many teams working together to design, implement and manage climateadapted public spaces
- Better understanding of urban tree management
 - Current tree management challenges
 - Heat and location issues
 - Community perception of trees
 - How do we help our community understand the benefit of urban trees?
- Framework to consider difficult decisions with regard to management of public assets under a changing climate
 - What are the trade-offs?
 - Health; initial and ongoing costs; ease of management; community acceptance

Next steps for GSCC

- Sharing of Case Study with relevant staff
- RPE mapping onto internal GIS system
 - Accessible for all staff
- Internal staff training on climate mitigation and adaptation (July 2024)
 - RPE viewer and reports will form the platform for adaptation component
 - Locally relevant maps and vulnerabilities assist in discussions
 - Initially targeting key teams responsible for managing Council assets with vulnerable assets
 - Linking emissions reduction and adaptation responses
- Creation of materials to embed climate-related considerations for staff on intranet

